Question 1. Give an example of a group G and two elements a, b in G such that "the order" |ab| does not equal "the order" |a||b|.

Solution. Consider a group G, consisting of the identity e and an element g, such that $g^2 = e$ (it is in fact isomorphic to \mathbb{Z}_2). Take a = b = g. Then |a| = 2, because $a \neq e$ and $a^2 = e$. Therefore, |a||b| = 4. Since $ab = g^2 = e$, we have |ab| = 1. Thus, $|ab| \neq |a||b|$.