Question 1. Give an example of a group G and two elements a, b in G such that "the order" $|a b|$ does not equal "the order" $|a||b|$.

Solution. Consider a group G, consisting of the identity e and an element g, such that $g^{2}=e\left(\right.$ it is in fact isomorphic to \mathbb{Z}_{2}). Take $a=b=g$. Then $|a|=2$, because $a \neq e$ and $a^{2}=e$. Therefore, $|a||b|=4$. Since $a b=g^{2}=e$, we have $|a b|=1$. Thus, $|a b| \neq|a||b|$.

