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Formula for torsion:
(γ′, γ′′, γ′′′)

|[γ′, γ′′]|2

a∗ b – dot product. [a, b] – vector product. |a| – vector length. (a, b, c) :=
a ∗ [b, c] – triple product.

Triple product can be computed as a determinant of a matrix:

(a, b, c) = det

a1 a2 a3
b1 b2 b3
c1 c2 c3


It is also convenient to remember that triple product is invariant under a
circular shift of its three operands (a, b, c):

(a, b, c) = a ∗ [b, c] = c ∗ [a, b]

Tangent vectors:

γ′ = (
1

2

√
1 + t,−1

2

√
(1− t), 1

2

√
2)

γ′′ = (
1

4
√

1 + t
,

1

4
√

1− t
, 0)

γ′′′ = (− 1

8(1 + t)3/2
,

1

8(1− t)3/2
, 0)

Let’s first compute vector product:

[γ′, γ′′] = det
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The squared length of the vector:
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And since there exist natural bounds on t: −1 < t < 1:
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Now triple product is:
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And finally the torsion is:
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