Answer to Question #72475, Math / Discrete Mathematics

Solve by least cost method and apply UV method to optimize the solution.

					Supply
	19	30	50	13	7
	70	30	40	60	10
	40	10	60	20	18
Demand	5	8	7	15	

Solution.

					Supply
				7	7
	3		7		10
	2	8		8	18
Demand	5	8	7	15	

 $Total \ Cost = 7 \cdot 13 + 3 \cdot 70 + 7 \cdot 40 + 2 \cdot 40 + 8 \cdot 10 + 8 \cdot 20 = 901$

UV method:

$$c_{ij} = u_i + v_j$$
 for occupied cells

The reduced costs for unoccupied cells:

$$reduced \ cost = c_{ij} - u_i - v_j$$
$$c_{11} = 19 - 1 = 18; \ c_{12} = 30 - 7 = 23; \ c_{13} = 50 - 5 = 45$$

$$c_{22} = 30 - 2 - 7 = 21$$
; $c_{24} = 60 - 2 - 7 = 51$; $c_{33} = 60 - 1 - 5 = 54$

	$v_1 = 1$	$v_2 = 7$	$v_3 = 5$	$v_4 = 7$	Supply
$u_1 = 0$				7	7
$u_2 = 2$	3		7		10
<i>u</i> ₃ = 1	2	8		8	18
Demand	5	8	7	15	

Since all the current reduced costs are non-negative, this is the optimal solution.

The minimum cost = Total Cost = 901

Answer provided by AssignmentExpert.com