Answer on Question \#72465 - Math - Discrete Mathematics
6. Show that $\sim(p \rightarrow q)$ and $p \wedge \sim q$ are logically equivalent. (Hint: you can use a truth table to prove it or you apply De Morgan law to show the $\sim(p \rightarrow q)$ is $p \wedge \sim q$.
$\sim(\mathrm{p} \rightarrow \mathrm{q}) \quad \mathrm{p} \wedge \sim \mathrm{q}$
$01111 \quad 1001$
$110 \begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$
$\begin{array}{llllllll}\mathbf{0} & 0 & 1 & 0 & 0 & \mathbf{0} & 1 & 0\end{array}$
So, both formulas have the same truth table, then they're logically equivalent.
7.Let p and q be the propositions.
$\mathrm{p}:$ I bought a lottery ticket this week.
q: I won the million-dollar jackpot on Friday.
a) Form a tautology using p. Express the tautology in English sentence. $\mathrm{p} \mathrm{V} \neg \mathrm{p}$: I bought a lottery ticket this week or I didn’t buy a lottery ticket this week.
b) Form a tautology using q. Express the tautology in English sentence. $\mathrm{q} \vee \mathrm{q} \mathrm{q}$: I won the million-dollar jackpot on Friday or I didn't win the milliondollar jackpot on Friday.
c) Form a contradiction using p. Express the contradiction in English sentence. $\mathrm{p} \Lambda \neg \mathrm{p}$: I bought a lottery ticket this week and I didn't buy a lottery ticket this week.
d) Form a contradiction using q. Express the contradiction in English sentence. $\mathrm{q} \wedge \neg \mathrm{q}: \mathrm{I}$ won the million-dollar jackpot on Friday and I didn’t win the milliondollar jackpot on Friday.
8. If you have a tautology r and you negate r, what kind of sentence do you get?
b. A contradiction.

Answer provided by AssignmentExpert.com

