Here is the information about the circuit :

$$
\begin{aligned}
\text { Capacitor }= & 100 \mathrm{nF} \rightarrow C=100 \cdot 10^{-9} \mathrm{~F} \equiv 10^{-7} \mathrm{~F} \rightarrow C=10^{-7} \mathrm{~F} \\
& \text { Resistor }=47 \mathrm{k} \Omega \rightarrow R=47 \cdot 10^{3} \Omega \\
& \text { Supply voltage }=5 \mathrm{~V} \rightarrow V_{0}=5 \mathrm{~V}
\end{aligned}
$$

Investigate the meaning of 'time constant' and from your graph estimate a value. Compare this with your calculated one.

SOLUTION

Charging characteristic for a series capacitive circuit is

$$
\begin{gathered}
V(t)=V_{0}\left(1-e^{-\frac{t}{T}}\right), \text { where } \\
T=R C-\text { is called the time constant } .
\end{gathered}
$$

In our case,

$$
T=47 \cdot 10^{3} \cdot 10^{-7}=47 \cdot 10^{-4}=4.7 \cdot 10^{-3} \equiv 4.7(\mathrm{~ms}) \text { (miliseconds) }
$$

To find this given constant from the experimental data, we transform the initial formula.

$$
\begin{aligned}
V(t)=V_{0}\left(1-e^{-\frac{t}{T}}\right) \rightarrow 1-e^{-\frac{t}{T}} & =\frac{V(t)}{V_{0}} \rightarrow-e^{-\frac{t}{T}}=\frac{V(t)}{V_{0}}-1 \rightarrow e^{-\frac{t}{T}}=1-\frac{V(t)}{V_{0}} \\
-\frac{t}{T} & =\ln \left(1-\frac{V(t)}{V_{0}}\right)
\end{aligned}
$$

Now we are plotting the graph: on the $O x$ axis, we set aside time (in milliseconds); on the $O y$ axis, we set off this value $\ln \left(1-\frac{V(t)}{V_{0}}\right)$.
In such coordinates, the graph will be a straight line, and in order to find a "time constant" we need evaluate :

$$
T=\frac{-1}{\text { the slope of the straight line }} .
$$

Answer provided by https://www.AssignmentExpert.com

