Answer on Question \#72330, Math / Statistics and Probability
The mean value of land and buildings per acre from a sample of farms is $\$ 1800$, with a standard deviation of $\$ 300$. The data set has a bell-shaped distribution.
Assume the number of farms in the sample is 71 .
(a) Use the empirical rule to estimate the number of farms whose land and building values per acre are between $\$ 1500$ and $\$ 2100$
(b) If 30 additional farms were sampled, about how many of these farms would you expect to have land and building values between $\$ 1500$ and $\$ 2100$ per acre?
Solution
(a) $\mu=1800, \sigma=300$

Empirical rule holds only for normal populations.
Let $X=$ value of lands and buildings of farm per acre. Use normal tables
$P(1500<X<2100)$
Normal Distribution, $\mu=1800, \sigma=300$, we convert this to standard normal using

$$
z=\frac{x-\mu}{\sigma}
$$

$z_{1}=\frac{1500-1800}{300}=-1$
$z_{2}=\frac{2100-1800}{300}=1$
$P(-1.00<Z<1.00)=$ Area in between -1.00 and 1.00
$P(1500<X<2100)=P(-1.00<Z<1.00)=$
$=P(Z<1.00)-P(Z<-1.00)=0.8413-0.1587=0.6826=68.26 \%$
Multiply this percentage by the sample size 71

$$
71 \cdot 0.6826 \approx 48 \text { (farms) }
$$

(b) Number of additional farms whose land and building values per acre are between $\$ 1500$ and $\$ 2100$

$$
30 \cdot 0.6826 \approx 20 \text { (farms) }
$$

Answer provided by https://www.AssignmentExpert.com

