Answer on Question \#72300 - Math - Calculus

Question

$$
\frac{d y}{d x}-4 y(x)=0, \quad y(0)=1
$$

Solution

Given equation

$$
\begin{equation*}
\frac{d y}{d x}-4 y(x)=0, \tag{i}
\end{equation*}
$$

here $y(0)=1$.
We know that $L\left(\frac{d y}{d x}\right)=s^{1} \bar{y}(s)-s^{0} y(0)$
Putting the value of (ii) into (i), we get

$$
\begin{align*}
& {\left[s^{1} \bar{y}(s)-s^{0} y(0)\right]-4 \bar{y}(s)=0} \tag{iii}\\
& \left.s^{1} \bar{y}(s)-4 \bar{y}(s)\right]-y(0)=0 \tag{iv}
\end{align*}
$$

Using $\mathrm{y}(0)=1$, equation (iv) will become

$$
\begin{align*}
& (s-4) \bar{y}=1 \\
& \bar{y}=\frac{1}{s-4} \tag{v}
\end{align*}
$$

Taking Laplace inverse L^{-1} on both sides of (v), we get

$$
y(t)=e^{4 t}
$$

because $L\left(e^{a t}\right)=\frac{1}{s-a}, \quad L^{-1}\left(\frac{1}{s-a}\right)=e^{a t}$.
Hence the solution of the problem will be $y(t)=e^{4 t}$.
Answer: $y(t)=e^{4 t}$.

