Answer on Question \#72276 - Math - Differential Geometry | Topology

Question

Torsion is defined only when $k(s) \neq 0$ (why?)

Solution

The torsion is given by

$$
k_{1}(s)=\frac{r^{\prime} \cdot\left(r^{\prime \prime} \times r^{\prime \prime \prime}\right)}{\left(r^{\prime} \times r^{\prime \prime}\right)^{2}}
$$

The curvature is given by

$$
k(s)=\frac{r^{\prime} \times r^{\prime \prime}}{\left|r^{\prime}\right|^{3}}
$$

where $r(s)$ is a vector with coordinates $x(s), y(s), z(s)$.
So, if $k(s)=0$ then $r^{\prime} \times r^{\prime \prime}=0$, and torsion will not be defined due to a division by zero.

