

Answer on Question #72276 – Math – Differential Geometry | Topology

Question

Torsion is defined only when $k(s) \neq 0$ (why?)

Solution

The torsion is given by

$$k_1(s) = \frac{\mathbf{r}' \cdot (\mathbf{r}'' \times \mathbf{r}''')}{(\mathbf{r}' \times \mathbf{r}'')^2}$$

The curvature is given by

$$k(s) = \frac{\mathbf{r}' \times \mathbf{r}''}{|\mathbf{r}'|^3}$$

where $\mathbf{r}(s)$ is a vector with coordinates $x(s), y(s), z(s)$.

So, if $k(s) = 0$ then $\mathbf{r}' \times \mathbf{r}'' = 0$, and torsion will not be defined due to a division by zero.