Question:

As far as I can understand, the question was about simplifying the given equation for further solving.

Given equation is:

$$
\begin{equation*}
\frac{\sin ^{8} y}{a^{3}}+\frac{\cos ^{8} y}{b^{3}}=\frac{1}{(a+b)^{3}} . \tag{1}
\end{equation*}
$$

Answer:

The first step we have to do is applying the power-reduction formula:

$$
\begin{aligned}
& \sin ^{2} \alpha=\frac{1-\cos 2 \alpha}{2} \\
& \cos ^{2} \alpha=\frac{1+\cos 2 \alpha}{2}
\end{aligned}
$$

In our case:

$$
\begin{aligned}
& \sin ^{8} y=\left(\sin ^{2} y\right)^{4}=\left(\frac{1-\cos 2 y}{2}\right)^{4} \\
& \cos ^{8} y=\left(\cos ^{2} y\right)^{4}=\left(\frac{1+\cos 2 \alpha}{2}\right)^{4}
\end{aligned}
$$

On the next step, we change the variable. Let:

$$
z=\frac{1-\cos 2 y}{2}
$$

Now, the given equation turns to:

$$
\frac{z^{4}}{a^{3}}+\frac{(1-z)^{4}}{b^{3}}=\frac{1}{(a+b)^{3}}
$$

which can be transformed to a quartic equation:

$$
z^{4}-z^{3} \frac{4 a^{3}}{a^{3}+b^{3}}+z^{2} \frac{6 a^{3}}{a^{3}+b^{3}}-z \frac{4 a^{3}}{a^{3}+b^{3}}+\frac{a^{3}}{a^{3}+b^{3}}-\frac{a^{3} b^{3}}{(a+b)^{3}}=0
$$

or:

$$
\begin{equation*}
z^{4}-z^{3} \frac{4}{1+c^{3}}+z^{2} \frac{6}{1+c^{3}}-z \frac{4}{1+c^{3}}+\frac{1}{1+c^{3}}-\frac{b^{3}}{(1+c)^{3}}=0, \tag{2}
\end{equation*}
$$

where $c=b / a$.
Equation (2) can be solved as a quartic equation.

