Answer on Question \# 72163 - Math - Differential Equations

Question

Obtain all the first and second order partial derivatives of the function: $f(x, y)=x^{\wedge} 2 \sin y+y^{\wedge} 2 \cos x$

Solution

We have the function of two variables

$$
f(x, y)=x^{2} \sin y+y^{2} \cos x
$$

1) Obtain the first order partial derivatives.

Holding y constant and differentiating f with respect to x, we get f_{x} :

$$
f_{x}=\left(x^{2} \sin y+y^{2} \cos x\right)_{x}=2 x \sin y-y^{2} \sin x
$$

Holding x constant and differentiating f with respect to y, we get f_{y} :

$$
f_{y}=\left(x^{2} \sin y+y^{2} \cos x\right)_{y}=x^{2} \cos y+2 y \cos x
$$

2) Obtain the second order partial derivatives.

Holding y constant and differentiating f_{x} with respect to x, we get $f_{x x}$:

$$
f_{x x}=\left(f_{x}\right)_{x}=\left(2 x \sin y-y^{2} \sin x\right)_{x}=2 \sin y-y^{2} \cos x
$$

Holding x constant and differentiating f_{x} with respect to y, we get $f_{x y}$:

$$
f_{x y}=\left(f_{x}\right)_{y}=\left(2 x \sin y-y^{2} \sin x\right)_{y}=2 x \cos y-2 y \sin x
$$

Holding y constant and differentiating f_{y} with respect to x, we get $f_{y x}$:

$$
f_{y x}=\left(f_{y}\right)_{x}=\left(x^{2} \cos y+2 y \cos x\right)_{x}=2 x \cos y-2 y \sin x
$$

Thus $f_{x y}=f_{y x}$
Holding x constant and differentiating f_{y} with respect to y, we get $f_{y y}$:

$$
f_{y y}=\left(f_{y}\right)_{y}=\left(x^{2} \cos y+2 y \cos x\right)_{y}=-x^{2} \sin y+2 \cos x
$$

Answer:

The first order partial derivatives are

$$
\begin{gathered}
f_{x}=2 x \sin y-y^{2} \sin x \\
f_{y}=x^{2} \cos y+2 y \cos x
\end{gathered}
$$

The second order partial derivatives are

$$
\begin{gathered}
f_{x x}=2 \sin y-y^{2} \cos x \\
f_{x y}=f_{y x}=2 x \cos y-2 y \sin x \\
f_{y y}=-x^{2} \sin y+2 \cos x
\end{gathered}
$$

