Question \#72150, Math / Calculus
Obtain first and second derivative of $f(x, y)=x^{\wedge} 2 \sin y+y^{\wedge} 2 \cos x$

$$
f(x, y)=x^{2} \sin y+y^{2} \cos x ;
$$

First derivative

$$
\begin{aligned}
& {f_{x}^{\prime}}_{x}=\frac{\partial f}{\partial x}=2 x \sin y-y^{2} \sin x ; \\
& f_{y}^{\prime}=\frac{\partial f}{\partial y}=x^{2} \cos y+2 y \cos x ;
\end{aligned}
$$

Second derivative

$$
\begin{gathered}
f_{x x}^{\prime \prime}=\frac{\partial\left(f_{x}^{\prime}\right)}{\partial x}=2 \sin y-y^{2} \cos x ; \\
f_{x y}^{\prime \prime}=\frac{\partial\left(f_{x}^{\prime}\right)}{\partial y}=f_{y x}^{\prime \prime}=\frac{\partial\left(f_{y}^{\prime}\right)}{\partial x}=2 x \cos y-2 y \sin x ; \\
f_{y y}^{\prime \prime}=\frac{\partial\left(f_{y}^{\prime}\right)}{\partial y}=-x^{2} \sin y+2 \cos x .
\end{gathered}
$$

