Answer on Question \#71893 - Math - Differential Equations
 Question

$d y / d x+y \cot x=5 e^{\wedge} \cos x$

Solution

The given equation

$$
\frac{d y}{d x}+y \cot x=5 e^{\cos x}
$$

is a linear differential equation of the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where $P(x)=\cot x, \quad Q(x)=5 e^{\cos x}$.
To solve this equation we find the integrating factor

$$
I(x)=e^{\int P(x) d x}=e^{\int \cot x d x}
$$

Calculate the integral in the exponent:

$$
\int \cot x d x=\int \frac{\cos x}{\sin x} d x=\int \frac{d(\sin x)}{\sin x}=\ln |\sin x|
$$

So the integrating factor is

$$
I(x)=e^{\ln |\sin x|}=\sin x
$$

Multiply both sides of the given equation by $I(x)=\sin x$:

$$
\begin{gathered}
\sin x \frac{d y}{d x}+(\sin x \cdot \cot x) y=5 \sin x e^{\cos x} \\
\sin x \frac{d y}{d x}+(\cos x) y=5 \sin x e^{\cos x}
\end{gathered}
$$

Using the Product Rule we get

$$
\frac{d}{d x}(y \sin x)=5 \sin x e^{\cos x}
$$

Integrate both sides of this equation:

$$
\begin{gathered}
\int \frac{d}{d x}(y \sin x) d x=\int 5 \sin x e^{\cos x} d x \\
y \sin x=5 \int e^{\cos x} d(-\cos x)=-5 \int e^{\cos x} d(\cos x) \\
y \sin x=-5 e^{\cos x}+c
\end{gathered}
$$

where c is an integration constant.
Dividing both sides by $\sin x$ we get the general solution of the original equation:

$$
y=\left(-5 e^{\cos x}+c\right) \csc x
$$

Answer: $y=\left(-5 e^{\cos x}+c\right) \csc x$.

