Answer on Question \#71820 - Math - Discrete Mathematics

Question

Prove that for any integer n such that $n \equiv 2 \bmod 3, n^{\wedge} k \equiv 1$ or $2(\bmod 3)$, where $k \in N$

Solution

From $n \equiv 2 \bmod 3$ we can write n as $n=3 t+2$, where t is integer number.
Consider

$$
n^{k}=(3 t+2)^{k} .
$$

Using formula

$$
\begin{gathered}
(a+b)^{k}=\sum_{i=0}^{k}\binom{k}{i} a^{k-i} b^{i} \\
(3 t+2)^{k}=\binom{k}{0}(3 t)^{k}+\binom{k}{1}(3 t)^{k-1} 2^{1}+\cdots+\binom{k}{k-1}(3 t)^{1} 2^{k-1}+\binom{k}{k} 2^{k}
\end{gathered}
$$

Obviously,

$$
\left(\binom{k}{0}(3 t)^{k}+\binom{k}{1}(3 t)^{k-1} 2^{1}+\cdots+\binom{k}{k-1}(3 t)^{1} 2^{k-1}\right) \equiv 0 \bmod 3
$$

because each term of the sum has a multiplier of 3 .
Therefore,

$$
n^{k} \equiv(3 t+2)^{k} \equiv 2^{k} \bmod 3
$$

Using the principle of mathematical induction verify statement

$$
2^{k} \equiv 1 \bmod 3 \text { or } 2^{k} \equiv 2 \bmod 3 \text { for } k \in N .
$$

For $k=1$ and $k=2$ statement is true:

$$
2^{1} \equiv 2 \bmod 3,2^{2} \equiv 4 \equiv 1 \bmod 3
$$

Let the statement be true for $k=l$:

$$
2^{l} \equiv 1 \bmod 3 \text { or } 2^{l} \equiv 2 \bmod 3 .
$$

Consider $k=l+1$.
If $2^{l} \equiv 1 \bmod 3$ then $2^{l+1} \equiv 2 \cdot 2^{l} \equiv 2 \cdot 1 \equiv 2 \bmod 3$.
If $2^{l} \equiv 2 \bmod 3$ then $2^{l+1} \equiv 2 \cdot 2^{l} \equiv 2 \cdot 2 \equiv 4 \equiv 1 \bmod 3$.
Hence the statement $2^{l+1} \equiv 2 \bmod 3$ or $2^{l+1} \equiv 1 \bmod 3$ is true.
According to the principle of mathematical induction the statement is true for $k \in N$.
As a result, one gets $n^{k} \equiv 2^{k} \equiv 1 \bmod 3$ or $n^{k} \equiv 2^{k} \equiv 2 \bmod 3$.

