Answer on Question \#71657 - Math - Differential Equations

$$
\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=x^{3}
$$

Solution

The auxiliary equation:

$$
\begin{gathered}
k^{2}-2 k+1=0 \\
k_{1,2}=1
\end{gathered}
$$

Since the auxiliary equation has equal roots, then:

$$
u=\varphi_{1}(y+k x)+x \varphi_{2}(y+k x)=\varphi_{1}(y+x)+x \varphi_{2}(y+x)
$$

where φ_{1}, φ_{2} are arbitrary functions.
Reference: Differential Equations by K. S. Rawat, page 331

Then particular integral:

$$
p=\frac{1}{f\left(D, D^{\prime}\right)} \varphi(x, y)
$$

Reference: Differential Equations by K. S. Rawat, page 334
So we have:

$$
\begin{gathered}
f\left(D, D^{\prime}\right)=D^{2}-2 D D^{\prime}+D^{\prime 2} \\
\varphi(x, y)=x^{3} \\
p=\frac{1}{D^{2}-2 D D^{\prime}+D^{\prime 2}} x^{3}=\frac{1}{\left(D-D^{\prime}\right)^{2}} x^{3}=\frac{1}{D^{2}\left(1-\frac{D^{\prime}}{D}\right)^{2}} x^{3}=\frac{1}{D^{2}}\left(1-\frac{D^{\prime}}{D}\right)^{-2} x^{3}= \\
=\frac{1}{D^{2}}\left(1+\frac{2 D^{\prime}}{D}+\frac{3 D^{\prime}}{D^{2}}+\cdots\right) x^{3}=\frac{1}{D^{2}} x^{3}=\frac{x^{5}}{20}
\end{gathered}
$$

The general solution of the given equation is $z=u+p$
Answer: $z=\varphi_{1}(y+x)+x \varphi_{2}(y+x)+\frac{x^{5}}{20}$
Answer provided by https://www.AssignmentExpert.com

