Answer on Question #71393, Math / Functional Analysis

Is the real line a metric space?

Solution. Yes, the real line is a metric space.

Recall that a set X is a metric space if there is a function $d: X^2 \to \mathbb{R}$ such that for each $x, y, z \in X$:

- (M1) $d(x, y) \ge 0$;
- (M2) d(x, y) = d(y, x);
- (M3) $d(x, y) \le d(x, z) + d(z, y)$;
- (M4) $d(x, y) = 0 \Leftrightarrow x = y$.

Let $d: \mathbb{R}^2 \to \mathbb{R}$ be defined as:

$$d(x, y) = |x - y|$$
 for each $x, y \in \mathbb{R}$.

(M1) $d(x, y) \ge 0$ because for each $x, y \in \mathbb{R}$.

(M2)
$$d(x, y) = |x - y| = |-(y - x)| = |y - x| = d(y, x)$$
;

(M3)
$$d(x, y) = |x - y| = |(x - z) + (z - y)| \le |x - z| + |z - y| = d(x, z) + d(z, y);$$

(M4)
$$d(x, y) = 0 \Leftrightarrow |x - y| = 0 \Leftrightarrow x - y = 0 \Leftrightarrow x = y$$
.

Hence, the real line is a metric space.

Answer provided by https://www.AssignmentExpert.com