Prove or disprove that:

- 1. $A B \subseteq A C B$
- 2. $(A B) \cup (B C) \cup (C A) = (A \cup B \cup C) (A \cap B \cap C)$

Solution:

- 1. Answer: That is wrong. Let A be $\{1,2,3\}$, B= $\{1\}$, C= $\{2\}$. A-B= $\{2,3\}$, A-C-B= $\{3\}$. $\{2,3\} \not\subseteq \{3\}$.
- 2. <u>Answer: That is true.</u> Let's denote $A_1 = A - B - C$, $B_1 = B - A - C$, $C_1 = C - A - B$, $AB = A \cap B - C$, $AC = A \cap C - B$, $BC = B \cap C - A$, $ABC = A \cap B \cap C$. $A - B = A_1 \cup AC$, $B - C = B_1 \cup AB$, $A - C = A_1 \cup BC \implies (A - B) \cup (B - C) \cup (C - A) = A_1 \cup AC \cup B_1 \cup AB \cup A_1 \cup BC$. $(A \cup B \cup C) - (A \cap B \cap C) = A_1 \cup B_1 \cup C_1 \cup AB \cup BC \cup AC$. Thus $(A - B) \cup (B - C) \cup (C - A) = (A \cup B \cup C) - (A \cap B \cap C)$





