Prove or disprove that:

1. $A-B \subseteq A-C-B$
2. $(A-B) \cup(B-C) \cup(C-A)=(A \cup B \cup C)-(A \cap B \cap C)$

Solution:

1. Answer: That is wrong.

2. Answer: That is true.

Let's denote $A_{1}=A-B-C, B_{1}=B-A-C, C_{1}=C-A-B, A B=A \cap B-C$, $A C=A \cap C-B, B C=B \cap C-A, A B C=A \cap B \cap C$.
$A-B=A_{1} \cup A C, B-C=B_{1} \cup A B, A-C=A_{1} \cup B C \Longrightarrow(A-B) \cup(B-C) \cup(C-A)=$ $A_{1} \cup A C \cup B_{1} \cup A B \cup A_{1} \cup B C$.
$(A \cup B \cup C)-(A \cap B \cap C)=A_{1} \cup B_{1} \cup C_{1} \cup A B \cup B C \cup A C$.
Thus $(A-B) \cup(B-C) \cup(C-A)=(A \cup B \cup C)-(A \cap B \cap C)$

