## Answer on Question \#71146 - Math - Real Analysis

## Question

Is $d(x, y)=\sqrt{|x-y|}$ a metric?

## Solution

First let us recall the definition of the metric
(see https://en.wikipedia.org/wiki/Metric (mathematics)\#Definition).
Let us assume that $x, y \in \mathbb{R}$. Now let us check all four conditions from definition.

1. $d(x, y) \geq 0$. Since $|x-y| \geq 0$ due to the property of absolute value, and the square root is also nonnegative function we conclude that the condition 1 is satisfied.
2. $d(x, y)=0 \Leftrightarrow \sqrt{|x-y|}=0 \Leftrightarrow|x-y|=0 \Leftrightarrow x=y$, so the second condition is satisfied.
3. $d(x, y)=\sqrt{|x-y|}=\sqrt{|y-x|}=d(y, x)$, and the condition of symmetry is also satisfied.
4. $d(x, z) \leq d(x, y)+d(y, z)$. Let us start from the well-known triangle inequality (see https://en.wikipedia.org/wiki/Triangle inequality\#Example_norms)
$|a+b| \leq|a|+|b|$. Let us put $a:=x-y, b:=y-z \Rightarrow a+b=x-z$. Then we get:
$|x-z| \leq|x-y|+|y-z|$. The last inequality is easily transformed to $|x-z| \leq|x-y|+|y-z|+2 \sqrt{|x-y| \cdot|y-z|} \Leftrightarrow|x-z| \leq(\sqrt{|x-y|}+\sqrt{|y-z|})^{2} \Leftrightarrow$ $\Leftrightarrow \sqrt{|x-z|} \leq \sqrt{|x-y|}+\sqrt{|y-z|}$, so we obtained the required inequality $d(x, z) \leq d(x, y)+d(y, z)$, and the last condition is also satisfied.

We see that all four conditions from definition are satisfied so $d(x, y)=\sqrt{|x-y|}$ is a metric.
Answer: Yes.

