Answer on Question \#71099 - Math - Calculus

Question

Given that n is a positive integer, find $\frac{d}{d x}\left(x \cdot(\ln x)^{n}\right)$.

Solution

Applying the product rule and the chain rule
(see https://en.wikipedia.org/wiki/Differentiation rules\#Elementary rules of differentiation),
we get
$\frac{d}{d x}\left(x \cdot(\ln x)^{n}\right)=(\ln x)^{n} \cdot \frac{d x}{d x}+x \cdot \frac{d}{d x}\left((\ln x)^{n}\right)=(\ln x)^{n}+x \cdot n(\ln x)^{n-1} \cdot \frac{d \ln x}{d x}=$
$=(\ln x)^{n}+x \cdot n(\ln x)^{n-1} \cdot \frac{1}{x}=(\ln x)^{n}+n(\ln x)^{n-1}$.
Answer: $(\ln x)^{n}+n(\ln x)^{n-1}$.

