Answer on Question \#71010 - Math - Trigonometry

Question

From the top of a cliff 126 meters high, the angle of depression of a boat is 20.7 degrees. How far is the boat from the foot of the cliff?

Solution

The angle of depression is the angle β measured downward from the horizontal line in the direction of sight of a boat (see figure).

By condition of the problem $\beta=20.7^{\circ}$. Then we can find the angle α between the cliff, AC , and the line of sight of a boat, CB:
$\alpha=90^{\circ}-\beta=90^{\circ}-20.7^{\circ}=69.7^{\circ}$
Now we consider $\triangle A B C$ which is the right triangle since $m \angle C A B=90^{\circ}$. The tangent ratio for an acute angle α in this triangle is

$$
\tan \alpha=\frac{A B}{A C}
$$

Then we get the distance from the foot of the cliff A to the boat B, that is $A B$:

$$
A B=A C \cdot \tan \alpha
$$

Substituting $A C=126 \mathrm{~m}$ and $\tan \alpha=\tan 69.7^{\circ} \approx 2.7$ we get

$$
A B=126 \cdot 2.7 \approx 340 \mathrm{~m}
$$

Answer: the distance from the foot of the cliff to the boat is 340 m .

