Answer on Question \# 70958 - Math - Calculus

Question

Find the volume of the solid of revolution obtained by rotating the curve $x=3 \cos ^{3} \theta, y=3 \sin ^{3} \theta$ about the x-axis.

Solution

A curve defined parametrically by

$$
\begin{equation*}
x(\theta)=3 \cos ^{3} \theta, \quad y(\theta)=3 \sin ^{3} \theta \tag{1}
\end{equation*}
$$

is called an asteroid. It is shown in the figure below.

The parametric curve (1) is revolved about the x-axis. The volume of a solid of revolution is given by

$$
V=\int_{a}^{b} \pi y^{2}(x) d x
$$

For this case

$$
\begin{gathered}
y=y(\theta)=3 \sin ^{3} \theta \\
x=x(\theta)=3 \cos ^{3} \theta
\end{gathered}
$$

x varies within $[-3,3]$ so $a=-3$ and $b=3$. We get

$$
\begin{equation*}
V=\int_{x=-3}^{x=3} \pi y^{2}(\theta) d x(\theta)=2 \int_{x=0}^{x=3} \pi y^{2}(\theta) d x(\theta) \tag{2}
\end{equation*}
$$

Find $d x$:

$$
d x=d\left(3 \cos ^{3} \theta\right)=3\left(\cos ^{3} \theta\right)^{\prime} d \theta=3 \cdot 3 \cos ^{2} \theta \cdot(-\sin \theta) d \theta=-9 \sin \theta \cos ^{2} \theta d \theta
$$

When $x=0, \cos ^{3} \theta=0$ so $\cos \theta=0$ and $\theta=\frac{\pi}{2}$;
when $x=3, \cos ^{3} \theta=1$ so $\cos \theta=1$ and $\theta=0$.
Substitute the known values into (2):
$V=2 \int_{x=0}^{x=3} \pi\left(3 \sin ^{3} \theta\right)^{2}\left(-9 \sin \theta \cos ^{2} \theta d \theta\right)=-2 \pi \cdot 81 \int_{x=0}^{x=3}\left(\sin ^{2} \theta\right)^{3} \cos ^{2} \theta \sin \theta d \theta$.

$$
V=-162 \pi \int_{\theta=\pi / 2}^{\theta=0}\left(1-\cos ^{2} \theta\right)^{3} \cos ^{2} \theta \sin \theta d \theta
$$

Substitute $\cos \theta=u$. We get $\sin \theta d \theta=d(-\cos \theta)=-d u$;
if $\theta=\pi / 2$, then $\cos (\pi / 2)=0$ so $u=0$,
if $\theta=0$, then $\cos 0=1$ so $u=1$.
So,

$$
\begin{aligned}
& V=-162 \pi \int_{0}^{1}\left(1-u^{2}\right)^{3} u^{2}(-d u)=162 \pi \int_{0}^{1}\left(1-3 u^{2}+3 u^{4}-u^{6}\right) u^{2} d u= \\
& =162 \pi \int_{0}^{1}\left(u^{2}-3 u^{4}+3 u^{6}-u^{8}\right) d u=\left.162 \pi\left(\frac{u^{3}}{3}-3 \frac{u^{5}}{5}+3 \frac{u^{7}}{7}-\frac{u^{9}}{9}\right)\right|_{0} ^{1}= \\
& \begin{array}{c}
162 \pi\left(\frac{1}{3}-\frac{3}{5}+\frac{3}{7}-\frac{1}{9}\right)=162 \pi\left(\frac{2}{9}+3\left(\frac{1}{7}-\frac{1}{5}\right)\right)=162 \pi\left(\frac{2}{9}+3 \cdot \frac{-2}{35}\right)= \\
=162 \pi\left(\frac{70-54}{315}\right)=\frac{288 \pi}{35}
\end{array}
\end{aligned}
$$

Answer: $V=\frac{288 \pi}{35}$.

