Answer on Question \#70948 - Math - Statistics and Probability

Question

A and B play 12 games of chess, of which 6 are won by $A, 4$ are won by B, and 2 end in a draw. They agree to play a match consisting of 3 games. Find the probability that
a) A wins all 3 games
b) 2 games end in a draw
c) A and B win alternately
d) B wins at least 1 game.

Solution

a) Binomial probability with $n=3, p=\frac{6}{12}=\frac{1}{2}$.

$$
P(X=3)=C_{3}^{3}\left(\frac{1}{2}\right)^{3}=\frac{1}{8}=0.125 .
$$

b) Binomial probability with $n=3, p=\frac{2}{12}=\frac{1}{6}$.

$$
P(X=2)=C_{3}^{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)=\frac{5}{12} \approx 0.4167 .
$$

c) $P=\frac{1}{2} * \frac{1}{3} * \frac{1}{2}+\frac{1}{3} * \frac{1}{2} * \frac{1}{3}=\frac{1}{12}+\frac{1}{18}=\frac{5}{36} \approx 0.1389$.
d) Binomial probability with $n=3, p=\frac{4}{12}=\frac{1}{3}$.

$$
P(X \geq 1)=1-P(X=0)=1-C_{3}^{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{3}=0.7037
$$

Answer: a) 0.125 ; b) 0.4167 ; c) 0.1389 ; d) 0.7037 .

