Answer on Question \#70926 - Math - Calculus

Question

How to find the double point of the curve $y^{\wedge} 2=(x-2)^{\wedge} 2(x-1)$?

Solution

The function $f(x, y)=0$ has a singular point P if in point P both first partial derivatives of the function are zero:

$$
\frac{\partial}{\partial x} f(x, y)=\frac{\partial}{\partial y} f(x, y)=0 .
$$

Here

$$
\begin{gathered}
f(x, y)=y^{2}-(x-2)^{2} \cdot(x-1)=y^{2}-x^{3}+5 x^{2}-8 x+4 \\
\frac{\partial}{\partial x} f(x, y)=-(x-2)^{2}-(x-1)(2 x-4)=-3 x^{2}+10 x-8 \\
\frac{\partial}{\partial y} f(x, y)=2 y \\
\frac{\partial^{2}}{\partial x^{2}} f(x, y)=10-6 x \\
\frac{\partial^{2}}{\partial y^{2}} f(x, y)=2 \\
\frac{\partial^{2}}{\partial x \partial y} f(x, y)=0
\end{gathered}
$$

To find a singular point, one should solve the system of equations

$$
\left\{\begin{array} { c }
{ \frac { \partial } { \partial x } f (x , y) = 0 } \\
{ \frac { \partial } { \partial y } f (x , y) = 0 }
\end{array} \Rightarrow \left\{\begin{array} { c }
{ - (x - 2) ^ { 2 } - (x - 1) (2 x - 4) = 0 } \\
{ 2 y = 0 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ [\begin{array} { l }
{ x = \frac { 4 } { 3 } } \\
{ x = 2 } \\
{ y = 0 }
\end{array} }
\end{array} \Rightarrow \left[\begin{array}{l}
\left\{\begin{array}{l}
x=\frac{4}{3} \\
y=0 \\
\{x=2 \\
y=0
\end{array}\right.
\end{array}\right.\right.\right.\right.
$$

Point $\left(\frac{4}{3}, 0\right)$ does not lie on the curve $y^{2}=(x-2)^{2}(x-1)$ because $f\left(\frac{4}{3}, 0\right) \neq 0$.
Point $(2,0)$ lies on the curve $y^{2}=(x-2)^{2}(x-1)$ because $f(2,0)=0$.
Point $(2,0)$ is a double point because at least one of the second derivatives $\frac{\partial^{2}}{\partial x^{2}} f(x, y) \neq 0$, $\frac{\partial^{2}}{\partial y^{2}} f(x, y) \neq 0$ simultaneously for this point.

Type of the double point is determined by the expression

$$
\begin{gathered}
g(x, y)=\frac{\partial^{2}}{\partial x^{2}} f(x, y) \cdot \frac{\partial^{2}}{\partial y^{2}} f(x, y)-\left(\frac{\partial^{2}}{\partial x \partial y} f(x, y)\right)^{2}=2(10-6 x)-0^{2}=20-12 x ; \\
g(2,0)=20-12 \times 2<0 .
\end{gathered}
$$

In this case, there are two branches of the curve passing through the point (2,0). These branches have distinct tangents.

A slope m of the tangent can be found from the equation

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial y^{2}}\left(x_{0}, y_{0}\right) m^{2}+2 \frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right) m+\frac{\partial^{2} f}{\partial x^{2}}\left(x_{0}, y_{0}\right)=0 \\
2 m^{2}-2=0 \\
m=1 \text { or } m=-1
\end{gathered}
$$

Curve $y^{2}=(x-2)^{2}(x-1)$ can be rewritten as $y=(x-2) \sqrt{x-1}$ or $y=-(x-2) \sqrt{x-1}$.

Such a point $(2,0)$ is called a node (a point of self-intersection).
Answer: $(2,0)$ is a double point, a point of self-intersection.

