Answer on Question \#70890 - Math - Statistics and Probability

Question

What characteristics are important to process when considering a random sample?

Solution

The median is the so-called mean value of an ordered series of values of a random variable:

$$
M_{e}=\left\{\begin{array}{l}
\frac{x_{k}+x_{k+1}}{2}, \quad n=2 k \\
x_{k+1}, \quad n=2 k+1
\end{array}\right.
$$

where n is the size of the sample.

Mode is a value that has a higher frequency than others.

The sampling range is the difference between the largest and smallest values of the random sample:

$$
R=x_{\max }-x_{\min }
$$

Average sample

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Sample variance

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}
$$

Unbiased sample variance

$$
s^{2}=\frac{n}{n-1} \sigma^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}
$$

The mean square deviation

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}
$$

The coefficient of variation

$$
V=\frac{\sigma}{\bar{X}} \cdot 100 \%=\frac{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}}{\frac{1}{n} \sum_{i=1}^{n} x_{i}} \cdot 100 \%
$$

