Answer on Question \#70831 - Math - Geometry Question

Calculate the arc-length of catenary $\gamma(t)=(t, \cosh t)$ starting at the point $(0,1)$.

Solution

A parametrized curve in the plane is a differentiable function

$$
\gamma(t)=(t, \cosh t)
$$

where $t \geq 0$.
Then for any $t>0$ we define its arclength from 0 to t to be

$$
s(t)=\int_{0}^{t}\left\|\gamma^{\prime}(u)\right\| d u
$$

We have $\gamma^{\prime}(u)=(1, \sinh t)$ and

$$
\left\|\gamma^{\prime}(u)\right\|=\sqrt{(1)^{2}+(\sinh u)^{2}}=\sqrt{(\cosh u)^{2}}=\cosh u
$$

$s(t)=\int_{0}^{t}\left\|\gamma^{\prime}(u)\right\| d u=\int_{0}^{t} \cosh u d u=\left.\sinh u\right|_{0} ^{t}=\sinh (t)-\sinh (0)=$ $=\sinh (t), t>0$
Answer: the arc - length is $s(t)=\sinh (t), t>0$.

