Answer on Question \#70824 - Math - Geometry

Question

1. Find the length of astroid $x=a \cos ^{3} t, y=a \sin ^{3} t,[0,2 \pi]$

Solution

In view of the symmetry of the curve, it's enough to find one-fourth l of the length of the arc for arstroid (L is the length of astroid, $L=4 l$), the parameter changes from 0 to $\frac{\pi}{2}$.

Find the differentials:

$$
d x=-3 a \cos ^{2} t \sin t ; d y=3 a \sin ^{2} t \cos t
$$

Hence we find

$$
\begin{aligned}
& d x=\sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{9 a^{2} \cos ^{4} t \sin ^{2} t+9 a^{2} \sin ^{4} t \cos ^{2} t}= \\
& =\sqrt{9 a^{2} \cos ^{2} t \sin ^{2} t\left(\cos ^{2} t+\sin ^{2} t\right)}=\sqrt{9 a^{2} \cos ^{2} t \sin ^{2} t}=3 a \cos t \sin t \\
& =
\end{aligned}
$$

Integrating the resulting expression for $d x$ in the range from 0 to $\frac{\pi}{2}$, we get

$$
\begin{gathered}
l=\int_{0}^{\pi / 2} \frac{3}{2} a \sin 2 t d t=\frac{3}{2} a \int_{0}^{\pi / 2} \sin 2 t d t=-\left.\frac{3}{4} a \cos 2 t\right|_{0} ^{\frac{\pi}{2}}=\frac{3}{4} a+\frac{3}{4} a=\frac{3}{2} a \\
\Rightarrow L=4 \times \frac{3}{2} a=6 a
\end{gathered}
$$

Answer: the length of the astroid is $6 a$.

