Answer on Question \#70730 - Math - Trigonometry

Question

Top is 12 meters across: straight line down is 7.81 meters, slope is $2: 1$. What is the base?

Solution

$A B=12$
$A D=7.81$

Angles $\angle B A D$ and $\angle A D C$ are equal to 90° (we assume the minimum distance is between $A B$ and $D C$ so the angle $\angle A D C=90^{\circ}$, and $A B C D$ is a trapezium then the angle $\angle D A B=90^{\circ}$, or else we can't find the base). $B H$ is a height of the trapezium; $A B H D$ is a rectangle, so $A B=H D, A D=B H$.

The slope is $2: 1$ so $\tan (\angle B C H)=1 / 2$ (or $\tan (\angle B C H)=2$, that depends on what you mean when you that the slope is $2: 1$).

If $\tan (\angle B C D)=1 / 2$ then $\tan (\angle B C D)=\tan (\angle B C H)=B H / C H=1 / 2$, so $C H=2 \times B H=2 \times 7.81=15.62$ (meters).

The base is $\mathrm{DC}=\mathrm{DH}+\mathrm{CH}=12+15.62=27.62$ (meters).

If $\tan (\angle B C D)=2$ then $\tan (\angle B C D)=\tan (\angle B C H)=B H / C H=2$, so $C H=B H / 2=7.81: 2=3.905$ (meters).
The base is $\mathrm{DC}=\mathrm{DH}+\mathrm{CH}=12+3.905=15.905$ (meters).
Answer: 27.62 meters or 15.905 meters.

