Answer on Question \#70612, Math / Differential Equations
The normal form of the differential equation

$$
y^{\prime \prime}-x y^{\prime}+\left(4 x^{2}-1\right) y=0
$$

Solution

Consider a second order linear ODE in the standard form

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{1}
\end{equation*}
$$

By a change of dependent variable, (1) can be written as

$$
\begin{equation*}
u^{\prime \prime}+Q(x) u=0 \tag{2}
\end{equation*}
$$

which is called the normal form of (1).
To find the transformation, let use put $y(x)=\mathrm{u}(\mathrm{x}) \mathrm{v}(\mathrm{x})$.
When this is substituted in (1), we get

$$
\begin{gathered}
y^{\prime}=u^{\prime} v+v^{\prime} u \\
y^{\prime \prime}=u^{\prime \prime} v+u^{\prime} v^{\prime}+v^{\prime \prime} u+v^{\prime} u^{\prime} \\
v u^{\prime \prime}+\left(2 v^{\prime}+p v\right) u^{\prime}+\left(v^{\prime \prime}+p v^{\prime}+q v\right) u=0
\end{gathered}
$$

Now we set the coefficient of u^{\prime} to zero. This gives

$$
2 v^{\prime}+p v=0=>\frac{d v}{v}=-\frac{p}{2} d x=>v=e^{-\int p / 2 d x}
$$

Now coefficient of u becomes

$$
\left(q-\frac{1}{4} p^{2}-\frac{1}{2} p^{\prime}\right) v=Q(x) v
$$

Since v is nonzero, cancelling v we get the required normal form. Also, since v never vanishes, u vanishes if and only if y vanishes. Thus, the above transformation has no effect on the zeros of solution.

$$
y^{\prime \prime}-x y^{\prime}+\left(4 x^{2}-1\right) y=0
$$

We have that

$$
p(x)=-x, q(x)=4 x^{2}-1
$$

Then

$$
v=e^{-\int(-x) / 2 d x}=e^{x^{2} / 4}
$$

Now

$$
\begin{gathered}
Q(x)=4 x^{2}-1-\frac{1}{4}(-x)^{2}-\frac{1}{2}(-x)^{\prime} \\
Q(x)=4 x^{2}-1-\frac{1}{4} x^{2}+\frac{1}{2} \\
Q(x)=\frac{15}{4} x^{2}-\frac{1}{2}
\end{gathered}
$$

Thus, the equation in normal form becomes

$$
u^{\prime \prime}+\left(\frac{15}{4} x^{2}-\frac{1}{2}\right) u=0
$$

where $u=y e^{-x^{2} / 4}$
Answer provided by https://www.AssignmentExpert.com

