Answer on Question #70540, Math / Geometry

Theorem. Let $\alpha(s)$ be parametrized by arc length. Then $|\alpha'(s)| = 1$.

Poof. Let $\varphi: I \to \mathbb{R}^3$ is a regular curve and the arc length is $s(t) = \int_{t_0}^t |\varphi'(t)| dt$. We

solve for t as t = t(s) to get the function $t: J \rightarrow I$. Then

$$\alpha(s) = \varphi(t(s))$$

is parametrized by arc length. So,

$$\left|\alpha'(s)\right| = \left|\frac{d\alpha}{ds}\right| = \left|\frac{d\alpha}{dt} \cdot \frac{dt}{ds}\right| = \left|\frac{d\varphi(t(s))}{dt} \cdot \frac{1}{\frac{ds}{dt}}\right| = \left|\frac{d\varphi(t)}{dt} \cdot \frac{1}{\varphi'(t)}\right| = 1.$$