Answer on Question \#70540, Math / Geometry

Theorem. Let $\alpha(s)$ be parametrized by arc length. Then $\left|\alpha^{\prime}(s)\right|=1$.
Poof. Let $\varphi: I \rightarrow{ }^{3}$ is a regular curve and the arc length is $s(t)=\int_{t_{0}}^{t}\left|\varphi^{\prime}(t)\right| d t$. We solve for t as $t=t(s)$ to get the function $t: J \rightarrow I$. Then

$$
\alpha(s)=\varphi(t(s))
$$

is parametrized by arc length. So,

$$
\left|\alpha^{\prime}(s)\right|=\left|\frac{d \alpha}{d s}\right|=\left|\frac{d \alpha}{d t} \cdot \frac{d t}{d s}\right|=\left|\frac{d \varphi(t(s))}{d t} \cdot \frac{1}{\frac{d s}{d t}}\right|=\left|\frac{d \varphi(t)}{d t} \cdot \frac{1}{\varphi^{\prime}(t)}\right|=1 .
$$

