Answer on Question \#70464, Math / Statistics and Probability
Q. Find the length of the astroid $x=a \cos ^{3} t, y=a \sin ^{3} t, 0 \leq t \leq 2 \pi$.

Solution.

Fig. 1. Astroid.
The length of the curve, given parametrically in interval $t_{1} \leq t \leq t_{2}$ is calculated by the formula

$$
L=\int_{t_{1}}^{t_{2}} \sqrt{\left(x_{t}^{\prime}\right)^{2}+\left(y_{t}^{\prime}\right)^{2}} d t
$$

So, the length of the astroid is calculated by the formula

$$
L=\int_{0}^{2 \pi} 3 a \sin t \cos t d t
$$

Given the symmetry of astroid (fig. 1), it is enough to find the fourth part of the length of the $\operatorname{arc} L$, which corresponds to a change in the parameter t from 0 to $\frac{\pi}{2}$:

$$
\frac{1}{4} L=\int_{0}^{\frac{\pi}{2}} 3 a \sin t \cos t d t=\frac{3 a}{2} \int_{0}^{\frac{\pi}{2}} \sin 2 t d t=\left.\frac{3 a}{4}(-\cos 2 t)\right|_{0} ^{\frac{\pi}{2}}=\frac{3 a}{4}(1+1)=\frac{3}{2} a
$$

Hence $L=6 a$.
Answer. The length of the astroid equals $6 a$.
Answer provided by https://www.AssignmentExpert.com

