Answer on Question \# 70446-Math - Geometry

Question

Show that if \vec{a} and \vec{b} are in the same direction then $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$
Solution. Write $|\vec{a}+\vec{b}|$ as

$$
\begin{equation*}
|\vec{a}+\vec{b}|=\sqrt{(\vec{a}+\vec{b})^{2}} \tag{1}
\end{equation*}
$$

and find $(\vec{a}+\vec{b})^{2}$ which is the dot product of a vector $(\vec{a}+\vec{b})$ with itself

$$
(\vec{a}+\vec{b})^{2}=(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}
$$

Since the dot product is commutative that is $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$ then

$$
(\vec{a}+\vec{b})^{2}=|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}
$$

By definition the dot product of \vec{a} and \vec{b} is

$$
\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cdot \cos \theta
$$

where θ is the angle between vectors \vec{a} and \vec{b}. Since \vec{a} and \vec{b} are in the same direction then $\theta=0$ and $\cos 0=1$ so $\vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}|$. Then we have

$$
(\vec{a}+\vec{b})^{2}=|\vec{a}|^{2}+2|\vec{a}| \cdot|\vec{b}|+|\vec{b}|^{2}=(|\vec{a}|+|\vec{b}|)^{2}
$$

Finally substitute this expression into (1)

$$
|\vec{a}+\vec{b}|=\sqrt{(|\vec{a}|+|\vec{b}|)^{2}}=|\vec{a}|+|\vec{b}|
$$

Answer. Thus if \vec{a} and \vec{b} are in the same direction then $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$.

