Answer on Question # 70446 - Math - Geometry

Question

Show that if \vec{a} and \vec{b} are in the same direction then $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$ Solution. Write $|\vec{a} + \vec{b}|$ as

$$\left|\vec{a} + \vec{b}\right| = \sqrt{\left(\vec{a} + \vec{b}\right)^2} \qquad (1)$$

and find $(\vec{a} + \vec{b})^2$ which is the dot product of a vector $(\vec{a} + \vec{b})$ with itself

$$\left(\vec{a}+\vec{b}\right)^2 = \left(\vec{a}+\vec{b}\right)\cdot\left(\vec{a}+\vec{b}\right) = \vec{a}\cdot\vec{a}+\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{a}+\vec{b}\cdot\vec{b}$$

Since the dot product is commutative that is $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ then

$$(\vec{a} + \vec{b})^2 = |\vec{a}|^2 + 2\vec{a}\cdot\vec{b} + |\vec{b}|^2$$

By definition the dot product of \vec{a} and \vec{b} is

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos\theta$$

where θ is the angle between vectors \vec{a} and \vec{b} . Since \vec{a} and \vec{b} are in the same direction then $\theta = 0$ and $\cos 0 = 1$ so $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}|$. Then we have

$$(\vec{a} + \vec{b})^2 = |\vec{a}|^2 + 2|\vec{a}| \cdot |\vec{b}| + |\vec{b}|^2 = (|\vec{a}| + |\vec{b}|)^2$$

Finally substitute this expression into (1)

$$|\vec{a} + \vec{b}| = \sqrt{(|\vec{a}| + |\vec{b}|)^2} = |\vec{a}| + |\vec{b}|$$

Answer. Thus if \vec{a} and \vec{b} are in the same direction then $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$.