Answer on Question \#70299 - Math - Analytic Geometry

Question

What are projections of helix (acost, asint, t) in all three coordinate planes xy-plane, yz-plane, xz-plane?

Solution

1) projection of helix (acost, asint, t) in $x y$-plane is (acost, asint). The curve is $x=$ acost , $y=a s i n t$. If we take $x^{2}+y^{2}$, then we get $x^{2}+y^{2}=(a \cos t)^{2}+(a \sin t)^{2}=a^{2}\left((\cos t)^{2}+(\sin t)^{2}\right)=a^{2}$. This is a circle of radius $a: x^{2}+y^{2}=a^{2}$.
2) projection of helix (acost, asint, t) in $x z$-plane is (acost, t). The curve is $x=a \operatorname{cost}, z=t$. So, $x=\operatorname{acos} z$. This is a cosine function: $x=a \cos z$
3) projection of helix (acost, asint, t) in yz-plane is (asint, t). The curve is $y=a \operatorname{sint}, z=t$. So, $y=a \sin z$. This is a sine function: $y=a \operatorname{sinz}$.

Answer: $x^{2}+y^{2}=a^{2}, x=a \cos z, y=a \sin z$.

