Answer on Question \#70275 - Math - Geometry

Question

What are projections of helix (acost, $a \operatorname{sint}, \mathrm{t}$) in all three coordinate planes xy-plane, yz-plane, xz-plane

Solution

1) projection of helix ($a \cos t, a \operatorname{sint}, t$) in $x y$-plane is ($a \cos t, a \operatorname{sint}$). The curve is $x=a \operatorname{cost}$, $y=a \operatorname{sint}$. If we take $x^{2}+y^{2}$, then we get $x^{2}+y^{2}=(a \cos t)^{2}+(a \operatorname{sint})^{2}=a^{2}\left((\cos t)^{2}+(\sin t)^{2}\right)=a^{2}$. This is a circle of radius $a: x^{2}+y^{2}=a^{2}$
2) projection of helix ($a \operatorname{cost}, a \operatorname{sint}, \mathrm{t}$) in xz -plane is ($a \cos \mathrm{t}, \mathrm{t}$). The curve is $\mathrm{x}=a \operatorname{cost}, \mathrm{z}=\mathrm{t}$. So, $x=a \cos z$. This is a cosine function: $x=a \cos z$
3) projection of helix (acost, asint, t) in yz-plane is (asint, t). The curve is $y=a \operatorname{sint}, z=t$. So, $\mathrm{y}=a \sin z$. This is a sine function: $\mathrm{y}=a \operatorname{sinz}$.

Answer: $\mathrm{x}^{2}+\mathrm{y}^{2}=a^{2}, \mathrm{x}=a \cos \mathrm{z}, \mathrm{y}=a \sin z$.

