Answer on Question \#70267 - Math - Differential Equations
 Question

Reduce the following PDE to a set of three ODEs by the method of separation of variables.

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial u}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \varphi^{2}}=0
$$

Solution

Represent $u=u(r, \theta, \phi)$ as a product of two functions depending on r and (θ, φ) :

$$
u(r, \theta, \phi)=R(r) Y(\theta, \varphi)
$$

Substituting this expression into original equation we obtain

$$
Y \frac{d^{2} R}{d r^{2}}+\frac{2 Y}{r} \frac{d R}{d r}+\frac{R}{r^{2}} \frac{\partial^{2} Y}{\partial \theta^{2}}+\frac{R \cot \theta}{r^{2}} \frac{\partial Y}{\partial \theta}+\frac{R}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \varphi^{2}}=0
$$

Multiplying this equation by $\frac{r^{2}}{R Y}$ we get

$$
\frac{r^{2}}{R} \frac{d^{2} R}{d r^{2}}+\frac{2 r}{R} \frac{d R}{d r}+\frac{1}{Y} \frac{\partial^{2} Y}{\partial \theta^{2}}+\frac{\cot \theta}{Y} \frac{\partial Y}{\partial \theta}+\frac{1}{Y \sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \varphi^{2}}=0
$$

or

$$
\frac{r^{2}}{R} \frac{d^{2} R}{d r^{2}}+\frac{2 r}{R} \frac{d R}{d r}=-\left(\frac{1}{Y} \frac{\partial^{2} Y}{\partial \theta^{2}}+\frac{\cot \theta}{Y} \frac{\partial Y}{\partial \theta}+\frac{1}{Y \sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \varphi^{2}}\right)
$$

Equating both sides of the equality to a some constant λ, we obtain two equations. First equation for $R(r)$:

$$
\frac{r^{2}}{R} \frac{d^{2} R}{d r^{2}}+\frac{2 r}{R} \frac{d R}{d r}=\lambda
$$

or

$$
r^{2} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}-\lambda R=0
$$

Second equation for $Y(\theta, \varphi)$:

$$
-\left(\frac{1}{Y} \frac{\partial^{2} Y}{\partial \theta^{2}}+\frac{\cot \theta}{Y} \frac{\partial Y}{\partial \theta}+\frac{1}{Y \sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \varphi^{2}}\right)=\lambda
$$

or

$$
\frac{\partial^{2} Y}{\partial \theta^{2}}+\cot \theta \frac{\partial Y}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \varphi^{2}}+\lambda Y=0
$$

Now we represent $Y(\theta, \varphi)$ as a product of two functions depending on θ and φ

$$
Y(\theta, \varphi)=V(\theta) \Phi(\varphi)
$$

and substitute it into the last equation

$$
\Phi \frac{d^{2} V}{d \theta^{2}}+\Phi \cot \theta \frac{d V}{d \theta}+\frac{V}{\sin ^{2} \theta} \frac{d^{2} \Phi}{d \varphi^{2}}+\lambda V \Phi=0
$$

Multiplying this equation by $\frac{\sin ^{2} \theta}{\Phi V}$ we get

$$
\frac{\sin ^{2} \theta}{V} \frac{d^{2} V}{d \theta^{2}}+\frac{\cos \theta \sin \theta}{V} \frac{d V}{d \theta}+\frac{1}{\Phi} \frac{d^{2} \Phi}{d \varphi^{2}}+\lambda \sin ^{2} \theta=0
$$

or

$$
\frac{\sin ^{2} \theta}{V} \frac{d^{2} V}{d \theta^{2}}+\frac{\cos \theta \sin \theta}{V} \frac{d V}{d \theta}+\lambda \sin ^{2} \theta=-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \varphi^{2}}
$$

Equating both sides of this equality to a some constant m^{2}, we obtain two equations.
First equation for $V(\theta)$:

$$
\frac{\sin ^{2} \theta}{V} \frac{d^{2} V}{d \theta^{2}}+\frac{\cos \theta \sin \theta}{V} \frac{d V}{d \theta}+\lambda \sin ^{2} \theta=m^{2}
$$

or

$$
\frac{d^{2} V}{d \theta^{2}}+\cot \theta \frac{d V}{d \theta}+\left(\lambda-\frac{m^{2}}{\sin ^{2} \theta}\right) V=0
$$

The second equation for $\Phi(\varphi)$:

$$
-\frac{1}{\Phi} \frac{d^{2} \Phi}{d \varphi^{2}}=m^{2}
$$

or

$$
\frac{d^{2} \Phi}{d \varphi^{2}}+m^{2} \Phi=0
$$

Thus representing the original function $u(r, \theta, \varphi)$ as a product

$$
u(r, \theta, \phi)=R(r) Y(\theta, \varphi)=R(r) V(\theta) \Phi(\varphi)
$$

we obtained three equations for the functions $R(r), V(\theta)$ and $\Phi(\varphi)$:

$$
\begin{gathered}
r^{2} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}-\lambda R=0 \\
\frac{d^{2} V}{d \theta^{2}}+\cot \theta \frac{d V}{d \theta}+\left(\lambda-\frac{m^{2}}{\sin ^{2} \theta}\right) V=0 \\
\frac{d^{2} \Phi}{d \varphi^{2}}+m^{2} \Phi=0
\end{gathered}
$$

where λ and m are the some constants
Answer: the original PDE is reduced to a set of three ODEs

$$
r^{2} \frac{d^{2} R(r)}{d r^{2}}+2 r \frac{d R(r)}{d r}-\lambda R(r)=0
$$

$$
\begin{gathered}
\frac{d^{2} V(\theta)}{d \theta^{2}}+\cot \theta \frac{d V(\theta)}{d \theta}+\left(\lambda-\frac{m^{2}}{\sin ^{2} \theta}\right) V(\theta)=0 \\
\frac{d^{2} \Phi(\varphi)}{d \varphi^{2}}+m^{2} \Phi(\varphi)=0
\end{gathered}
$$

