
Answer on Question #70267 – Math – Differential Equations 

Question 

Reduce the following PDE to a set of three ODEs by the method of separation of variables. 
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Solution 

Represent 𝑢 = 𝑢(𝑟, 𝜃, ϕ) as a product of two functions depending on 𝑟 and (𝜃, 𝜑): 

𝑢(𝑟, 𝜃, ϕ) = 𝑅(𝑟)𝑌(𝜃, 𝜑) 

Substituting this expression into original equation we obtain 
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Multiplying this equation by  
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Equating both sides of the equality to a some constant  𝜆, we obtain two equations. 

First equation for 𝑅(𝑟):  
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Now we represent 𝑌(𝜃, 𝜑)  as a product of two functions depending on 𝜃 and 𝜑 

𝑌(𝜃, 𝜑) = 𝑉(𝜃)Φ(𝜑) 

and substitute it into the last equation 
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Equating both sides of this equality to a some constant 𝑚2, we obtain two equations. 

First equation for 𝑉(𝜃):  
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Thus representing the original function 𝑢(𝑟, 𝜃, φ) as a product 

𝑢(𝑟, 𝜃, ϕ) = 𝑅(𝑟)𝑌(𝜃, 𝜑) = 𝑅(𝑟)𝑉(𝜃)Φ(𝜑) 

we obtained three equations for the functions 𝑅(𝑟), 𝑉(𝜃) and Φ(𝜑): 
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where 𝜆 and 𝑚 are the some constants 

Answer: the original PDE is reduced to a set of three ODEs  
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