Answer on Question \# 70254-Math - Differential Equations

Question

Determine a region of the xy-plane for which the given DE would have a unique solution whose graph passes through a point $(x 0, y 0)$ in the region $(y-x) y^{\prime}=y+x$

Solution

We have the initial value problem

$$
y^{\prime}=\frac{y+x}{y-x} \quad y\left(x_{0}\right)=y_{0} .
$$

To determine a region of the xy-plane for which the given DE would have a unique solution whose graph passes through a point $\left(x_{0}, y_{0}\right)$ in the region, we use the Fundamental Theorem of Existence and Uniqueness for a first order differential equation

$$
y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

If $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous on a rectangular region defined by $a<x<b, c<y<d$ that contains the point $\left(x_{0}, y_{0}\right)$, then there exist an interval centered at x_{0} and a unique function $y(x)$ defined on the interval that satisfied the Initial Value Problem.

For this problem

$$
f(x, y)=\frac{y+x}{y-x}
$$

then

1. $f(x, y)=\frac{y+x}{y-x}$ is continuous when $y \neq x$ or otherwise $y>x$ or $y<x$.
2. $\frac{\partial f}{\partial y}=\left(\frac{y+x}{y-x}\right)_{y}=\frac{(y+x)_{y} \cdot(y-x)-(y+x) \cdot(y-x)_{y}}{(y-x)^{2}}=\frac{1 \cdot(y-x)-(y+x) \cdot 1}{(y-x)^{2}}=\frac{-2 x}{(y-x)^{2}}$
also is continuous when $y>x$ or $y<x$.
Therefore, by the Fundamental Theorem of Existence and Uniqueness, in the region of $y>x$ or $y<x$ the given DE would have a unique solution whose graph passes through a point $\left(x_{0}, y_{0}\right)$ in the region.

Answer: a region of the $x y$-plane for which the $\operatorname{DE}(y-x) y^{\prime}=y+x$ would have a unique solution whose graph passes through a point $\left(x_{0}, y_{0}\right)$ in the region, is $y>x$ or $y<x$.

Answer provided by https://www.AssignmentExpert.com

