Verify that the indicated expression is an implicit solution of the given first order differential equation. Find at least one explicit solution $y=\Phi(x)$ in each case. Use a graphing utility to obtain the graph of an explicit solution.
Give an interval I of definition of each solution Φ.

$$
2 x y d x+\left(x^{2}-y\right) d y=0, \quad-2 x^{2} y+y^{2}=1
$$

Solution
Implicit differentiation with respect to x

$$
\begin{aligned}
\frac{d}{d x}\left[-2 x^{2} y+y^{2}=1\right] & =>-4 x y-2 x^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}=0 \\
2 x y+x^{2} \frac{d y}{d x}-y \frac{d y}{d x} & =0=>2 x y+\left(x^{2}-y\right) \frac{d y}{d x}=0 \\
2 x y d x+ & \left(x^{2}-y\right) d y=0
\end{aligned}
$$

Hence, the indicated expression $-2 x^{2} y+y^{2}=1$ is an implicit solution of the given first order differential equation $2 x y d x+\left(x^{2}-y\right) d y=0$.

Find at least one explicit solution $y=\Phi(x)$

