Answer on Question \# 70218-Math - Differential Equations

Question

Determine a region of the xy-plane for which the given DE would have a unique solution whose graph passes through a point $(x 0, y 0)$ in the region
$(y-x) y^{\prime}=y x$

Solution

Rewrite the equation in the form

$$
y^{\prime}=\frac{y x}{y-x}, \quad y\left(x_{0}\right)=y_{0}
$$

Use the Fundamental Theorem of Existence and Uniqueness for a first order differential equation

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

If $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous on a rectangular region defined by $a<x<b, c<y<d$ that contains the point $\left(x_{0}, y_{0}\right)$, then there exist an interval centered at x_{0} and a unique function $y(x)$ defined on the interval that satisfied the Initial Value Problem $y\left(x_{0}\right)=y_{0}$. For this problem $f(x, y)=\frac{y x}{y-x}$ then

1. $f(x, y)=\frac{y x}{y-x}$ is continuous when $y \neq x$, in other words, when $y>x$ or $y<x$.
2. $\frac{\partial f}{\partial y}=\left(\frac{y x}{y-x}\right)_{y}=\frac{x(y-x)-y x \cdot 1}{(y-x)^{2}}=\frac{-x^{2}}{(y-x)^{2}}$ also is continuous when $y>x$ or $y<x$.

Therefore, by the Fundamental Theorem of Existence and Uniqueness, in the region of $y>x$ or $y<x$ would have a unique solution whose graph passes through a point $\left(x_{0}, y_{0}\right)$ in the region.

Answer: a region of the xy-plane for which the given DE would have a unique solution whose graph passes through a point $\left(x_{0}, y_{0}\right)$ in the region is $y>x$ or $y<x$.

