Answer on Question \#70211 - Math - Geometry

Question

ABCD is a plane quadrilateral and E is any point on AD . EF is drawn parallel to DB to meet $A B$ in F, and $E G$ is drawn parallel to $D C$ to meet $A C$ in G. Prove that FG is parallel to $B C$.

Solution

$\overleftrightarrow{E F} \| \overleftrightarrow{B D}=>\triangle A F E \sim \triangle A B D$
Let
$\frac{F E}{B D}=\frac{A F}{A B}=\frac{A E}{A D}=k$
$\overleftrightarrow{E R} \| \overleftrightarrow{C D}=>\triangle A G E \sim \triangle A C D$
Let
$\frac{E G}{D C}=\frac{A G}{A C}=\frac{A E}{A D}=m$
Then $m=k$

We have the vectors $\overrightarrow{E F}, \overrightarrow{D B}, \overrightarrow{E G}, \overrightarrow{D C}, \overrightarrow{F G}$, and $\overrightarrow{B C}$.
Then
$\overrightarrow{F G}=\overrightarrow{E G}-\overrightarrow{E F}$
$\overrightarrow{B C}=\overrightarrow{D C}-\overrightarrow{D B}$
$\overrightarrow{D B}=\frac{1}{k} \overrightarrow{E F}$
$\overrightarrow{D C}=\frac{1}{m} \overrightarrow{E G}=\frac{1}{k} \overrightarrow{E G}$
$\overrightarrow{B C}=\overrightarrow{D C}-\overrightarrow{D B}=\frac{1}{k} \overrightarrow{E G}-\frac{1}{k} \overrightarrow{E F}=\frac{1}{k}(\overrightarrow{E G}-\overrightarrow{E F})=\frac{1}{k} \overrightarrow{F G}$
The vectors $\overrightarrow{B C}$ and $\overrightarrow{F G}$ are collinear vectors. Hence, $\overleftrightarrow{F G} \| \overleftrightarrow{B C}$.

