Answer on Question \#70193 - Math - Functional Analysis

Question

Show that the absolute value of a linear functional has the subadditive and positive homogeneous properties.

Solution

Let $f: X \rightarrow$ be a linear functional and X a vector space. We show that $|f|$ has the subadditive and positive homogeneous properties.

Consider arbitrary $x, y \in X$. Since f is a linear functional, f is a additive function. Thus, $f(x+y)=f(x)+f(y)$. Then

$$
|f(x+y)|=|f(x)+f(y)| \leq|f(x)|+|f(x)| .
$$

So, $|f(x+y)| \leq|f(x)|+|f(x)|$ for each $x, y \in X$. This means that f has the subadditive property.

Consider any $x \in X$ and $\alpha \in, \alpha>0$. Since f is a linear functional, f is homogeneous. Thus, $f(\alpha x)=\alpha f(x)$. Then

$$
|f(\alpha x)|=|\alpha f(x)|=|\alpha||f(x)|=\alpha|f(x)|
$$

because $\alpha>0$. So, $|f(\alpha x)|=\alpha|f(x)|$ for each $x \in X$ and $\alpha \in, \alpha>0$. This means that f has the positive homogeneous property.

