Answer on Question \#70186 - Math - Functional Analysis

Question

Show that a norm on a vector space X is a sublinear functional on X.

Solution

Let's $f(x)=\|x\|$. Obviously, $\mathrm{f}(\mathrm{x})$ is a function from a vector space X to the scalar field \mathbb{R}.

1. $\forall x \in X, \quad \forall a \in \mathbb{R}_{+}, \quad f(x)=\|a \cdot x\|=|a| \cdot\|x\|=a \cdot\|x\|=a \cdot f(x)$, due to the multiplicative property of a norm.
2. $\forall x, y \in X, f(x+y)=\|x+y\| \leq\|x\|+\|y\|=f(x)+f(y)$, because of the triangle inequality.

Correctness of the statement and both properties (positive homogeneity and subadditivity) were proved.

