Answer on Question #70186 – Math – Functional Analysis

Question

Show that a norm on a vector space X is a sublinear functional on X.

Solution

Let's f(x) = ||x||. Obviously, f(x) is a function from a vector space X to the scalar field \mathbb{R} . 1. $\forall x \in X$, $\forall a \in \mathbb{R}_+$, $f(x) = ||a \cdot x|| = |a| \cdot ||x|| = a \cdot ||x|| = a \cdot f(x)$, due to the multiplicative property of a norm.

2. $\forall x, y \in X$, $f(x + y) = ||x + y|| \le ||x|| + ||y|| = f(x) + f(y)$, because of the triangle inequality.

Correctness of the statement and both properties (positive homogeneity and subadditivity) were proved.