Answer on Question \#70151 - Math - Calculus

Question

The height of a certain species 't' years after it was planted is given by

$$
H=20 \ln (3 t+2)+30
$$

cm:
a) how tall was the shrub when it was planted.
b) how long will it take for the shrub to reach a height of 1 metre.
c) At what rate is the shrubs height changing.
i) 3 years after being planted.
ii) 10 years after being planted.

Solution

a) When the shrub was planted then $t=0$.

Then $H(0)=20 \ln (3 \cdot 0+2)+30=20 \ln 2+30 \approx 43.86$.
So, the shrub had a tall of 43.86 cm .
b) The shrub has a height of 1 metre for each t such that $H(t)=100$.

Then

$$
\begin{gathered}
20 \ln (3 t+2)+30=100, \\
20 \ln (3 t+2)=70, \\
\ln (3 t+2)=\frac{7}{2}, \\
3 t+2=e^{\frac{7}{2}}, \\
3 t=e^{\frac{7}{2}}-2, \\
t=\frac{e^{\frac{7}{2}}-2}{3} \approx 10.372 .
\end{gathered}
$$

So,
$t \approx 10.372$ years after planting, the bush will have a height of 1 meter.
c) The rate of the shrubs height changing is

$$
\frac{d H}{d t}=\frac{20}{3 t+2} \cdot 3+0=\frac{60}{3 t+2} .
$$

i) $\left.\frac{d H}{d t}\right|_{t=3}=\frac{60}{3 \cdot 3+2}=\frac{60}{11}$.
ii) $\left.\frac{d H}{d t}\right|_{t=10}=\frac{60}{3 \cdot 10+2}=\frac{60}{32}=\frac{15}{8}$.

