Answer on Question \#70141 - Math - Calculus

Question

How do I prove this statement using properties of numbers: If $a<0, b<0$, then $\operatorname{Vab} \leq-(a+b) / 2$?

Solution

Given

$$
\sqrt{a b} \leq \frac{-a-b}{2}
$$

Notice the following property. If one proves $c^{2} \leq d^{2}$, where

$$
c=\sqrt{a b}>0, \quad d=\frac{-a-b}{2}=-\frac{1}{2}(a+b)>0, a<0, b<0,
$$

then one will also show that $c \leq d$ because

$$
c^{2}-d^{2}=(c-d)(c+d) \leq 0, c+d=\sqrt{a b}+\frac{-a-b}{2}>0(a<0, b<0) .
$$

Consider

$$
\begin{aligned}
& (\sqrt{a b})^{2} \leq\left(\frac{-a-b}{2}\right)^{2} \\
& a b \leq \frac{(a+b)^{2}}{4} \\
& 4 a b \leq a^{2}+2 a b+b^{2} \\
& \left(a^{2}-2 a b+b^{2}\right) \geq 0 \\
& (a-b)^{2} \geq 0
\end{aligned}
$$

which is true because the square of any number is greater or equal than zero, the equality is attained at $a=b$. Then

$$
\sqrt{a b} \leq \frac{-a-b}{2}
$$

is also true for $a<0, b<0$.

