Answer on Question \#70132 - Math - Calculus

Question

Use intermediate value theorem to prove $x(x-3)^{2}=3$ has a solution between 2 and 4 .

Solution

Let us consider the function $f(x)=x(x-3)^{2}-3, x \in[2,4]$. Obviously f is continuous as the polynomial $x^{3}-6 x^{2}+9 x-3$
(see https://math.berkeley.edu/~kmill/math1afa2014/poly.pdf).
Note that $f(2)=-1$, and $f(4)=1$.
Then by using intermediate value theorem
(see https://en.wikipedia.org/wiki/Intermediate value theorem) we conclude that f takes all the intermediate values between -1 and 1, i.e. there exist $s, 2<s<4: f(s)=0$, i.e.
$\exists 2<s<4: \quad s(s-3)^{2}-3=0 \Leftrightarrow s(s-3)^{2}=3$, i.e. the equation $x(x-3)^{2}=3$ has a solution between 2 and 4 . The statement is proved.

