Answer on Question \#70126 - Math - Calculus

Question

find out for which value of k the function f, given by $f(x)=\left\{(1-\cos 4 x) / x^{\wedge} 2\right.$, when $x \neq 0 ; k\left(2+\sin ^{\wedge}(2) x\right)$, when $x=0$ is continuous at $x=0$.

Solution

Definition: A function $f(x)$ is continuous at a if $\lim _{x \rightarrow a} f(x)=f(a)$.
Thus, we first find $\lim _{x \rightarrow 0} f(x)$

$$
\begin{gathered}
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1-\cos 4 x}{x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} 2 x}{x^{2}}=2 \lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)^{2} \\
=8 \lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{2 x}\right)^{2}=8\left(\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{2 x}\right)\right)^{2}=8 \cdot 1=8
\end{gathered}
$$

Then we find $f(0)$
$f(0)=k\left(2+\sin ^{2} 0\right)=2 k$
The function $f(x)$ is continuous at $\mathrm{x}=0$ if $\lim _{x \rightarrow 0} f(x)=f(0)$, that is $8=2 k=>k=4$
Answer: The function $f(x)$ is continuous at $x=0$ if $k=4$.

