Answer on Question \#69951 - Math - Discrete Mathematics

Question

Find the number of integer solutions to the equation $x_{1}+x_{2}+x_{3}=40$ where $6 \leq x_{1} \leq 15, \quad 5 \leq x_{2} \leq 20$ and $10 \leq x_{3} \leq 25$.

Solution

Method 1

Let $x_{1}, x_{2}, \ldots, x_{m}$ be integers. Then the number of solutions to the equation

$$
x_{1}+x_{2}+\cdots+x_{m}=n
$$

subject to the conditions $a_{1} \leq x_{1} \leq b_{1}, a_{2} \leq x_{2} \leq b_{2}, \ldots, a_{m} \leq x_{m} \leq b_{m}$ is equal to the coefficient of x^{n} in $\left(x^{a_{1}}+x^{a_{1}+1}+\cdots+x^{b_{1}}\right) \cdot\left(x^{a_{2}}+x^{a_{2}+1}+\cdots+x^{b_{2}}\right) \cdots\left(x^{a_{m}}+x^{a_{m}+1}+\cdots+x^{b_{m}}\right)$.
(see http://www.careerbless.com/aptitude/qa/permutations combinations imp8.php)
Applying this theorem to this problem one gets that the number of solutions to the equation

$$
x_{1}+x_{2}+x_{3}=40
$$

subject to conditions
$6=a_{1} \leq x_{1} \leq b_{1}=15,5=a_{2} \leq x_{2} \leq b_{2}=20, \ldots, 10=a_{3} \leq x_{3} \leq b_{3}=25$
is equal to the coefficient of x^{40} in

$$
\begin{gathered}
\left(x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}\right) \cdot \\
\left(x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18}+x^{19}+x^{20}\right) \cdot \\
\left(x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18}+x^{19}+x^{20}+x^{21}+x^{22}+x^{23}+x^{24}\right. \\
\left.+x^{25}\right)= \\
=x^{6} x^{5} x^{10}\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}\right) \cdot \\
\cdot\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}\right) \cdot \\
\cdot\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}\right)= \\
=x^{21}\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}\right) \cdot \\
\cdot\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}\right) \cdot \\
\cdot\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}\right)
\end{gathered}
$$

Thus, the number of integer solutions is 135 .

Method 2

From the equation $x_{1}+x_{2}+x_{3}=40$ we can express one of variables in terms of others: $x_{3}=40-$ $\left(x_{1}+x_{2}\right)$. Thus, $10 \leq 40-\left(x_{1}+x_{2}\right) \leq 25$, or, $-30 \leq-\left(x_{1}+x_{2}\right) \leq-15$, or $15 \leq x_{1}+x_{2} \leq 30$.

For each integer from 15 to 30 let's count the number of pairs of integers (x_{1}, x_{2}) such that $6 \leq$ $x_{1} \leq 15,5 \leq x_{2} \leq 20$.

Let $x_{1}+x_{2}=n$, where $15 \leq n \leq 30$. The minimal value of x_{1} (even less than 6) for which there exists x_{2} such that $x_{1}+x_{2}=n$ is $n-20$, i.e. n minus upper limit of x_{2}. Taking into account the lower limit of x_{1} being 6 , the minimal value of x_{1} really is $\max \{(n-20), 6\}$. Similarly, the maximal value of x_{2} (even greater than 15) for which there exists appropriate x_{2} is $n-5$, i.e. n minus lower limit of x_{2}. Taking into account the upper limit of x_{1} being 15 , the maximal value of x_{1} really is $\min \{(n-5), 15\}$. Then the number of pairs of integers $\left(x_{1}, x_{2}\right)$ such that that $6 \leq x_{1} \leq 15,5 \leq$ $x_{2} \leq 20$ and $x_{1}+x_{2}=n$ is the number of integers between $a_{n}=\max \{(n-20), 6\}$ and $b_{n}=$ $\min \{(n-5), 15\}$, i.e. $\left(b_{n}-a_{n}+1\right)$. In the table below columns correspond to value of n while blue cells in each column correspond to valid values of x_{1} :

	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
6																
7																
8																
9																
10																
11																
12																
13																
14																
15																

For $15 \leq n \leq 26, a_{n}=6$ and for the rest, $27 \leq n \leq 30, a_{n}=n-20$. For $15 \leq n \leq 19, b_{n}=n-$ 5 , and for the rest, $20 \leq n \leq 30, b_{n}=15$. Dividing n into three groups: below 20 (A), above 26 (B) and between (C):

$$
\begin{aligned}
& A=\sum_{n=15}^{19}\left(b_{n}-a_{n}+1\right)=\sum_{n=15}^{19}((n-5)-6+1)=\sum_{n=15}^{19}(n-10)=\sum_{n=5}^{9} n=(9-5+1) \frac{9+5}{2} \\
& =5 \times 7=35 \text {. } \\
& B=\sum_{n=20}^{26}\left(b_{n}-a_{n}+1\right)=\sum_{n=20}^{26}(15-6+1)=\sum_{n=20}^{26} 10=10(26-20+1)=10 \times 7=70 . \\
& C=\sum_{n=27}^{30}\left(b_{n}-a_{n}+1\right)=\sum_{n=27}^{30}(15-(n-20)+1)=\sum_{n=27}^{30}(36-n)=\sum_{n=36-27}^{36-30} n=\sum_{n=9}^{6} n \\
& =\sum_{n=6}^{9} n=(9-6+1) \frac{6+9}{2}=4 \times 7.5=30 . \\
& N=A+B+C=35+70+30=135 .
\end{aligned}
$$

Answer: 135.

