Answer on Question #69951 – Math – Discrete Mathematics

Question

Find the number of integer solutions to the equation $x_1 + x_2 + x_3 = 40$ where $6 \le x_1 \le 15$, $5 \le x_2 \le 20$ and $10 \le x_3 \le 25$.

Solution

Method 1

Let $x_1, x_2, ..., x_m$ be integers. Then the number of solutions to the equation

$$x_1 + x_2 + \dots + x_m = n$$

subject to the conditions $a_1 \le x_1 \le b_1$, $a_2 \le x_2 \le b_2$, ..., $a_m \le x_m \le b_m$ is equal to the coefficient of x^n in

$$(x^{a_1} + x^{a_1+1} + \dots + x^{b_1}) \cdot (x^{a_2} + x^{a_2+1} + \dots + x^{b_2}) \cdots (x^{a_m} + x^{a_m+1} + \dots + x^{b_m}).$$

(see http://www.careerbless.com/aptitude/ga/permutations combinations imp8.php)

Applying this theorem to this problem one gets that the number of solutions to the equation

$$x_1 + x_2 + x_3 = 40$$

subject to conditions

 $6 = a_1 \le x_1 \le b_1 = 15$, $5 = a_2 \le x_2 \le b_2 = 20$, ..., $10 = a_3 \le x_3 \le b_3 = 25$ is equal to the coefficient of x^{40} in

$$(x^{6} + x^{7} + x^{8} + x^{9} + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15}) \cdot (x^{5} + x^{6} + x^{7} + x^{8} + x^{9} + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15} + x^{16} + x^{17} + x^{18} + x^{19} + x^{20}) \cdot (x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15} + x^{16} + x^{17} + x^{18} + x^{19} + x^{20} + x^{21} + x^{22} + x^{23} + x^{24} + x^{25}) =$$

$$= x^{6}x^{5}x^{10}(1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + x^{7} + x^{8} + x^{9}) \cdot (1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + x^{7} + x^{8} + x^{9}) \cdot (1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + x^{7} + x^{8} + x^{9} + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15}) \cdot (1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + x^{7} + x^{8} + x^{9} + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15}) =$$

$$= x^{21}(1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + x^{7} + x^{8} + x^{9} + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15}) =$$

$$\cdot (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15}) \cdot (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15})$$
where the number of integer solutions is 135.

Thus, the number of integer solutions is 135.

Method 2

From the equation $x_1 + x_2 + x_3 = 40$ we can express one of variables in terms of others: $x_3 = 40 - (x_1 + x_2)$. Thus, $10 \le 40 - (x_1 + x_2) \le 25$, or, $-30 \le -(x_1 + x_2) \le -15$, or $15 \le x_1 + x_2 \le 30$.

For each integer from 15 to 30 let's count the number of pairs of integers (x_1, x_2) such that $6 \le x_1 \le 15, 5 \le x_2 \le 20$.

Let $x_1 + x_2 = n$, where $15 \le n \le 30$. The minimal value of x_1 (even less than 6) for which there exists x_2 such that $x_1 + x_2 = n$ is n - 20, i.e. n minus upper limit of x_2 . Taking into account the lower limit of x_1 being 6, the minimal value of x_1 really is max{(n - 20), 6}. Similarly, the maximal value of x_2 (even greater than 15) for which there exists appropriate x_2 is n - 5, i.e. n minus lower limit of x_2 . Taking into account the upper limit of x_1 being 15, the maximal value of x_1 really is min{(n - 5), 15}. Then the number of pairs of integers (x_1, x_2) such that that $6 \le x_1 \le 15$, $5 \le x_2 \le 20$ and $x_1 + x_2 = n$ is the number of integers between $a_n = \max\{(n - 20), 6\}$ and $b_n = \min\{(n - 5), 15\}$, i.e. ($b_n - a_n + 1$). In the table below columns correspond to value of n while blue cells in each column correspond to valid values of x_1 :

For $15 \le n \le 26$, $a_n = 6$ and for the rest, $27 \le n \le 30$, $a_n = n - 20$. For $15 \le n \le 19$, $b_n = n - 5$, and for the rest, $20 \le n \le 30$, $b_n = 15$. Dividing *n* into three groups: below 20 (A), above 26 (B) and between (C):

$$A = \sum_{n=15}^{19} (b_n - a_n + 1) = \sum_{n=15}^{19} ((n-5) - 6 + 1) = \sum_{n=15}^{19} (n-10) = \sum_{n=5}^{9} n = (9-5+1)\frac{9+5}{2}$$

= 5 × 7 = 35.
$$B = \sum_{n=20}^{26} (b_n - a_n + 1) = \sum_{n=20}^{26} (15 - 6 + 1) = \sum_{n=20}^{26} 10 = 10(26 - 20 + 1) = 10 \times 7 = 70.$$
$$C = \sum_{n=27}^{30} (b_n - a_n + 1) = \sum_{n=27}^{30} (15 - (n-20) + 1) = \sum_{n=27}^{30} (36 - n) = \sum_{n=36-27}^{36-30} n = \sum_{n=9}^{6} n$$

$$= \sum_{n=6}^{9} n = (9 - 6 + 1)\frac{6 + 9}{2} = 4 \times 7.5 = 30.$$
$$N = A + B + C = 35 + 70 + 30 = 135.$$

Answer: 135.