Answer on Question \#69778 - Math - Statistics and Probability

Question

A committee of four is to be formed from among 5 economists, 4 engineers, 2 statisticians and 1 doctor. Find the probabilities that
(i) Each profession is represented in the committee
(ii) Has at least one economists
(iii) Has a doctor as a member and three others
(iv) Has at least one engineer but no economists

Solution

$$
5+4+2+1=12
$$

The total number of selections is

$$
\binom{12}{4}=\frac{12!}{(12-4)!4!}=\frac{12(11)(10)(9)}{1(2)(3)(4)}=495
$$

(i) Each profession is represented in the committee

The following table shows the number of selections from each group:

Economists	Engineers	Statisticians	Doctors
1	1	1	1

Thus, a committee consisting of one profession from each field can be selected in

$$
\binom{5}{1} \cdot\binom{4}{1} \cdot\binom{2}{1} \cdot\binom{1}{1}=5(4)(2)(1)=40
$$

The probability that each profession is represented in the committee

$$
P(A)=\frac{40}{495}=\frac{8}{99}
$$

(ii) Has at least one economist

Find the probability that there is no economist in the committee

$$
4+2+1=7
$$

The suitable number of selections is

$$
\binom{7}{4}=\frac{7!}{(7-4)!4!}=\frac{(7)(6)(5)}{1(2)(3)}=35
$$

The probability that there is no economist in the committee

$$
P(\bar{B})=\frac{35}{495}=\frac{7}{99}
$$

The probability that there is at least one economist in the committee

$$
P(B)=1-P(\bar{B})=1-\frac{7}{99}=\frac{92}{99}
$$

(iii) Has a doctor as a member and three others

The following table shows the number of selections from each group:

Others	Doctors
1	1

$$
5+4+2=11
$$

Thus, a committee consisting of one profession from each field can be selected in

$$
\binom{11}{3} \cdot\binom{1}{1}=\frac{11!}{(11-3)!3!}(1)=\frac{(11)(10)(9)}{1(2)(3)}=165
$$

The probability that the committee has a doctor as a member and three others

$$
P(C)=\frac{165}{495}=\frac{1}{3}
$$

(iv) Has at least one engineer but no economists

The following table shows the number of selections from each group:

Economists	Engineers	Statisticians	Doctors
0	1	2	1
0	2	2	0
0	2	1	1
0	3	1	0
0	3	0	1
0	4	0	0

Thus, a committee having at least one engineer but no economists can be selected in

$$
\begin{aligned}
& \binom{4}{1} \cdot\binom{2}{2} \cdot\binom{1}{1}+\binom{4}{2} \cdot\binom{2}{2}+\binom{4}{2} \cdot\binom{2}{1} \cdot\binom{1}{1}+\binom{4}{3} \cdot\binom{2}{1}+\binom{4}{3} \cdot\binom{1}{1}+\binom{4}{4}= \\
& =4+\frac{4!}{(4-2)!(2)!}+\frac{4!}{(4-2)!(2)!}(2)+\frac{4!}{(4-3)!(3)!}(2)+\frac{4!}{(4-3)!(3)!}+1= \\
& =4+6+12+8+4+1=35
\end{aligned}
$$

The probability that the committee has at least one engineer but no economists

$$
P(D)=\frac{35}{495}=\frac{7}{99}
$$

Answer: i) $\frac{8}{99}$;
ii) $\frac{92}{99}$;
iii) $\frac{1}{3}$; iv) $\frac{7}{99}$.

