Answer on Question \#69227 - Math - Statistics and Probability

Question

Among 100,000 women with negative mammograms, 20 will be diagnosed with breast cancer in 2 years, whereas 1 woman in 10 with positive mammograms will be diagnosed with breast cancer in 2 years. Suppose that 10% of the general population of woman will have a positive mammogram. What is the probability that a woman who develops breast cancer over the next 2 years has a negative mammogram?

Solution

Let $A=\{$ mammogram +$\}$ and $B=\{$ breast cancer $\}$. Then

$$
\begin{gathered}
P(B \mid \bar{A})=\frac{20}{10^{5}}=0.0002 \\
P(B \mid A)=\frac{1}{10}=0.1
\end{gathered}
$$

The two events A and B would be highly dependent

$$
R R=\frac{P(B \mid A)}{P(B \mid \bar{A})}=\frac{0.1}{0.0002}=500
$$

The probability that a woman who develops breast cancer over the next 2 years has a negative mammogram

$$
\begin{gathered}
P(\bar{A} \mid B)=\frac{P(B \mid \bar{A}) P(\bar{A})}{P(B)} \\
P(\bar{A})=1-P(A)=1-0.1=0.9
\end{gathered}
$$

Using total probability rule

$$
P(B)=P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})
$$

$P(B)=0.1(0.1)+0.0002(0.9)=0.01018$.
Then

$$
P(\bar{A} \mid B)=\frac{0.0002(0.9)}{0.01018} \approx 0.0177
$$

Answer: 0.0177.

