Answer on Question #69191 – Math – Statistics and Probability

Question

Let A,B, C be three events such that P(A)=0.4, P(C)=0.3, $P((A \cap B)=0.2$ and $P(A \cap B)=0.1$ and $(A \cup B) \cap C=\emptyset$.

Find: **a)** P(A∪B∪C) **b)** P(A ∪ B)

Solution

a) Since,
$$(A \cup B) \cap C = \emptyset$$
,
 $P(A \cup B \cup C) = P(A \cup B) + P(C) = P(A) + P(B) - P(A \cap B) + P(C)$
 $= P(A) + P((A \cap B) \cup (\overline{A} \cap B)) - P(A \cap B) + P(C)$
 $= P(A) + P(A \cap B) + P(\overline{A} \cap B) - P(A \cap B \cap \overline{A} \cap B) - P(A \cap B)$
 $+ P(C) = P(A) + P(\overline{A} \cap B) - P(\emptyset) + P(C)$
 $= P(A) + P(\overline{A} \cap B) + P(C) =$
 $= 0.4 + 0.2 + 0.3 = 0.9$,
so $P(A \cup B \cup C) = 0.9$.

b) $P(\bar{A} \cup \bar{B}) = P(\overline{A \cap B}) = 1 - P(A \cap B) = 1 - 0.1 = 0.9,$ So $P(\bar{A} \cup \bar{B}) = 0.9.$

Answer: a) $P(A \cup B \cup C) = 0.9$; **b)** $P(\bar{A} \cup \bar{B}) = 0.9$.