Answer on Question \#69114 - Math - Real Analysis

Question

Show that the sequence $f_{n}(x)=\frac{x}{1+2 n x^{2}}, x \in[1, \infty)$ is uniformly convergent in $[1, \infty)$.

Proof

Obviously the pointwise limit of $f_{n}(x)$ is 0 . Indeed, for all fixed $x_{0} \in[1, \infty)$

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{x_{0}}{1+2 n x_{0}^{2}}=x_{0} \lim _{n \rightarrow \infty} \frac{1}{1+2 n x_{0}^{2}}=\left\{1+2 n x_{0}^{2} \rightarrow \infty \text { as } n \rightarrow \infty\right\}=0
$$

Now we apply the definition of the uniform convergence (see https://en.wikipedia.org/wiki/Uniform convergence\#Definition).

In our case the limit function is $f(x) \equiv 0$, and now we must find

$$
a_{n}=\sup _{x \in[1, \infty)}\left|f_{n}(x)-f(x)\right|=\sup _{x \in[1, \infty)} \frac{x}{1+2 n x^{2}}>0
$$

Applying a derivative we obtain:

$$
\frac{d f_{n}(x)}{d x}=\frac{1+2 n x^{2}-4 n x^{2}}{\left(1+2 n x^{2}\right)^{2}}=\frac{1-2 n x^{2}}{\left(1+2 n x^{2}\right)^{2}}<0, \text { where } n \in \mathbb{N}, x \in[1, \infty)
$$

Then $f_{n}(x)=\frac{x}{1+2 n x^{2}}$ monotonically decreases in x when $x \in[1, \infty)$, and

$$
\sup _{x \in[1, \infty)} f_{n}(x)=\sup _{x \in[1, \infty)} \frac{x}{1+2 n x^{2}}=f_{n}(1)=\frac{1}{1+2 n}
$$

Since $a_{n}=\frac{1}{1+2 n} \rightarrow 0$ as $n \rightarrow \infty$ (because $1+2 n \rightarrow \infty$ as $n \rightarrow \infty$), we conclude that $f_{n}(x)=\frac{x}{1+2 n x^{2}}$ is uniformly convergent in $[1, \infty)$.

