Answer on Question \#69112 - Math - Real Analysis

Question

Evaluate the limit as $n \rightarrow \infty$ of the sum
$1 / n[\sin (\pi / n)+\sin (2 \pi) / n+\ldots . .+\sin (2 n \pi) / n]$

Solution

There is a mistake in the last term.
There should be $\frac{1}{n} \cdot\left(\sin \left(\frac{\pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right)+\cdots+\sin \left(\frac{n \pi}{n}\right)\right)$ instead of
$\frac{1}{n} \cdot\left(\sin \left(\frac{\pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right)+\cdots+\sin \left(\frac{2 n \pi}{n}\right)\right)$.
Sum $\frac{\pi}{n} \sum_{i=1}^{n} \sin \left(\frac{\pi i}{n}\right)$ is the right Riemann sum for the integral $\int_{0}^{\pi} \sin x d x$.
So $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \sin \left(\frac{\pi i}{n}\right)=\frac{1}{\pi} \int_{0}^{\pi} \sin x d x=-\left.\frac{1}{\pi} \cos x\right|_{x=0} ^{x=\pi}=\frac{2}{\pi} \approx 0.6366$.

Answer: $\frac{2}{\pi} \approx 0.6366$.

