Answer on Question #69112 – Math – Real Analysis

Question

Evaluate the limit as $n \rightarrow \infty$ of the sum 1/n [sin (π/n) +sin (2π)/n +....+ sin ($2n\pi$)/n]

Solution

There is a mistake in the last term. There should be $\frac{1}{n} \cdot \left(\sin\left(\frac{\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right) + \dots + \sin\left(\frac{n\pi}{n}\right) \right)$ instead of $\frac{1}{n} \cdot \left(\sin\left(\frac{\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right) + \dots + \sin\left(\frac{2n\pi}{n}\right) \right)$.

Sum $\frac{\pi}{n} \sum_{i=1}^{n} sin\left(\frac{\pi i}{n}\right)$ is the right Riemann sum for the integral $\int_{0}^{\pi} sinxdx$. So $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} sin\left(\frac{\pi i}{n}\right) = \frac{1}{\pi} \int_{0}^{\pi} sinxdx = -\frac{1}{\pi} cosx|_{x=0}^{x=\pi} = \frac{2}{\pi} \approx 0.6366.$

Answer: $\frac{2}{\pi} \approx 0.6366$.

Answer provided by https://www.AssignmentExpert.com