Answer on Question \#68960 - Math - Linear Algebra

Question

Find the radius and the center of the circular section of the sphere $|r|=17$ cut off by the plane $r \cdot(i+2 j+2 k)=24$.

Solution

Let S be the sphere in \mathbb{R}^{3} with center $O(0,0,0)$ and radius R, and let Π be the plane with equation $A x+B y+C z=D$, so that $\vec{n}=(A, B, C)$ is a normal vector of Π.
If P is an arbitrary point on Π, the signed distance from the center of the sphere O to the plane Π is

$$
\rho=\frac{\overrightarrow{P 0} \cdot \vec{n}}{\|\vec{n}\|}=\frac{D}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

The intersection $S \cap \Pi$ is a circle if and only if $-R<\rho<R$, and in that case, the circle has radius $r_{c}=\sqrt{R^{2}-\rho^{2}}$ and center

$$
C=O+\rho \cdot \frac{\vec{n}}{\|\vec{n}\|}=\rho \cdot \frac{(A, B, C)}{\sqrt{A^{2}+B^{2}+C^{2}}} .
$$

In our case:

$$
\begin{gathered}
|r|=17 ; x+2 y+2 z=24 \\
S=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=289\right\}, P=\{(x, y, z): x+2 y+2 z=24\} . \\
\rho=\frac{24}{\sqrt{1^{2}+2^{2}+2^{2}}}=\frac{24}{3} . \\
r_{c}=\sqrt{R^{2}-\rho^{2}}=\sqrt{17^{2}-\left(\frac{24}{3}\right)^{2}}=15 . \\
C=\frac{24}{3} \cdot \frac{(1,2,2)}{\sqrt{1^{2}+2^{2}+2^{2}}}=\left(\frac{24}{9}, \frac{48}{9}, \frac{48}{9}\right) .
\end{gathered}
$$

Answer: 15; $\left(\frac{24}{9}, \frac{48}{9}, \frac{48}{9}\right)$.

